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Drag reduction by bubbles in stationary turbulent flows is sensitive to the compressibility of the bubbles.
Without this dynamical effect the bubbles only renormalize the fluid density and viscosity, an effect that by
itself can only lead to a small percentage of drag reduction. We show in this paper that the dynamics of bubbles
and their effect on the compressibility of the mixture can lead to a much higher drag reduction.
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I. INTRODUCTION

Drag reduction in turbulent flows is a subject of techno-
logical importance and of significant basic interest. As is
well known, drag reduction can be achieved using a number
of additives, including flexible polymers, rodlike polymers
and fibers, surfactants, and bubbles �1�. While the subject of
drag reduction by polymers had seen rapid theoretical
progress in the last few years �2–7� the understanding of drag
reduction by bubbles lags behind. For practical applications
in the shipping industry the use of polymers is out of the
question for economic and environmental reasons, but air
bubbles are potentially very attractive.

The theory of drag reduction by small concentrations of
minute bubbles is relatively straightforward, since under
such conditions the bubbles only renormalize the density and
the viscosity of the fluid, and a one-fluid model suffices to
describe the dynamics �8�. The fluid remains incompressible,
and the equations of motion are basically the same as for a
Newtonian fluid with renormalized properties. The amount
of drag reduction under such conditions is however, limited.
But when the bubbles increase in size, the one-fluid model
loses its validity since the bubbles become dynamical in the
sense that they are no longer Lagrangian particles, their ve-
locity is no longer the fluid velocity at their center, and they
begin to fluctuate under the influence of local pressure varia-
tions. The fluctuations of the bubbles are of two types: �i� the
bubbles are no longer spherical, distorting their shape ac-
cording to the pressure variations, and �ii� the bubbles can
change their volume �keeping their spherical shape� due to
the compressibility of the gas inside the bubble. The first
effect was studied numerically using the “front tracking” al-
gorithm in Refs. �9,10�. However, the results indicate either a
drag enhancement, or a limited and transient drag reduction.
This leads one to study the possibility of explaining bubbly
drag reduction by bubble compressibility. Indeed, a theoret-
ical model proposed by Legner �11� successfully explained
the bubbly drag reduction by modifying the turbulent viscos-
ity in the bubbly flow by the bulk viscosity of the bubbles.
While the bulk viscosity is important only when the bubbles
are compressible, it is important and interesting to see how
and why it affects the characteristics of the flow. The aim of
this paper is to study the drag reduction by bubbles when
bubble compressibility is dominant. Finally we compare our
finding with the results in Ref. �11�, showing that a non-
physical aspect of that theory is removed, while a good
agreement with experiment is retained.

In our thinking we were influenced by two main findings,
one experimental and the other simulational. The experiment
�12� established the importance of bubble dynamics in effect-
ing drag reduction. The same turbulent flow was set up once
in the presence of bubbles and once in the presence of glass
spheres whose density was smaller than that of the ambient
fluid. While bubbles effected drag reduction for sufficiently
high Reynolds number, the glass spheres enhanced the drag.
In the simulation �13� it was demonstrated that the drag re-
duction by the bubbles is connected in an intimate way to the
effective compressibility of the mixture. �The fluid by itself
was taken as incompressible in the simulation.� These two
observations, in addition to the experiments �14� will be at
the back of our mind in developing the theory, with the final
elucidation of all these observations in the last sections of
this paper.

In Sec. II we present the average �field� equations for
fluids laden with bubbles. This theory follows verbatim ear-
lier work �15–17� and it is limited to rather small bubbles �of
the order of the Kolmogorov scale� and to potential flows. In
Sec. III we employ the theory to find out at which Reynolds
and Weber numbers the bubbles interact sufficiently strongly
with the fluid to change significantly the stress tensor beyond
simple viscosity renormalization. In Sec. IV we study the
balance equation for momentum and energy in the turbulent
boundary layer. This leads to the main section of this paper,
Sec. V which presents the predictions of the theory regarding
drag reduction by bubbles. The volume variations of the
bubbles at sufficiently high Weber numbers are shown to be
an important physical reason for the phenomenon. A sum-
mary and discussion are presented in Sec. VI.

II. AVERAGED EQUATIONS FOR BUBBLY FLOWS

A Newtonian fluid with density � is laden with bubbles of
density �B, and radius R which is much smaller than the
outer scale of turbulence L. The volume fraction of bubbles
C is taken sufficiently small such that the direct interactions
between bubbles can be neglected. In writing the governing
equations for the bubbly flow we will assume that the length
scales of interest are larger than the bubble radius. Later we
will distinguish however, between the case of microbubbles
whose radius is smaller than the Kolmogorov scale � and
bubbles whose radius is of the order of � or slightly larger.
For length scales larger than the bubbles one writes �15–17�
the following:
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�i� The equation of motion for each bubble

�BCẇ = − C�p + C� · � − CF,

F �
9�

R2 �U − w� +
�

2
�DU

Dt
− ẇ� , �1�

where � is the dynamical viscosity of the neat fluid. In this
equation the force acting on the bubble is only approximate,
since we neglect gravity, the lift force and the added mass
force due to changes in the bubbles volume. We include only
the viscous force and the add-mass force due to bubble ac-
celeration, and we will show that this is sufficient for en-
hancing the drag reduction by the bubble dynamics. It can be
argued that adding the other forces does not change things
qualitatively.

�ii� The equation of motion for the carrier fluid

��1 − C�
�U

�t
= − �1 − C��p + �1 − C�� · � + CF + C� · � .

�2�

�iii� The continuity equation

��1 − C�
�t

+ � · �1 − C�U = 0. �3�

In these equations, U and w are the velocity of the carrier
fluid and of the bubble, respectively, and

�ij � �� �Ui

�xj
+

�Uj

�xi
� , �4�

F and � are the force and the stress caused by the disturbance
of the flow due to the bubbles, the Lagrangian derivatives are
defined by

Da

Dt
=

�a

�t
+ U · �a , �5�

and

ȧ =
�a

�t
+ w · �a . �6�

As the density of the bubble is usually much smaller than the
fluid, �B is taken to be 0. Combining �1� and �2�, we have

��1 − C�
DU

Dt
= − �p + � · � + C� · � . �7�

Note that the term containing F disappears in the last equa-
tion because of the cancellation of action and reaction forces.

The bubbles affect the flow in two ways: �a� changing the
effective density of the fluid; �b� introducing an additional
stress tensor � to the fluid velocity equation �7�.

The expression used for � is extremely important for the
discussion at hand. It is commonly accepted that the stress
tensor is affected by three factors:

� = �� + �R + �S. �8�

In this equation �� is the viscous stress tensor, written as
follows:

��,ij =
5�

2
� �Ui

�xj
+

�Uj

�xi
� . �9�

For very small bubbles �microbubbles� of very small density
this is the only significant contribution in Eq. �8�. When this
is the case the bubble contribution to the stress tensor can be
combined with � in Eq. �7�, resulting in the effective viscos-
ity given by

�eff = �1 + 5
2C�� . �10�

This formula is known to be correct when the bubbles are
surface contaminated. The study of drag reduction under this
renormalization of the viscosity and the concentration was
presented in Ref. �8�, with the result that drag reduction can
be obtained by putting the bubbles out of the viscous sub-
layer and not too far from the wall. The amount of drag
reduction is however rather limited in such circumstances.

The other two contributions in Eq. �8� are the concern of
the present paper. The component �R is nonzero only when
the bubble is not a Lagrangian particle, having a relative
velocity w−U with respect to the fluid; then the bubble ra-
dius is changing in time. Explicitly �15–17�,

�R = − �	Ṙ2 +
3

20
�w − U� · �w − U�
I −

�

20
�w − U��w − U� .

�11�

The last contribution �S is sensitive to the change in pressure
of the fluid due to the bubbles. It reads �15�

�S = −
R

C
� �p − p0�nn dA . �12�

Here p0 is the pressure of the fluid without bubbles, n is the
normal unit vector to the bubble surface, and dA is the area
differential. The relation of this expression to the relative
velocity and to the bubble dynamics calls for a calculation,
which in general is rather difficult. Such a calculation was
achieved explicitly only for potential flows, with the final
result �15,16�

�S = �	2

5
�w − U� · �w − U� − RR̈ −

3

2
�Ṙ�2
I

−
9�

20
�w − U��w − U� . �13�

III. RELATIVE IMPORTANCE OF THE STRESS
CONTRIBUTIONS AS A FUNCTION OF THE REYNOLDS

NUMBER

The relative importance of the three contributions ��, �R,
and �S depends on the Reynolds number and on R /L. To
study this question we represent Eq. �1� as follows:

�

2
�DU

Dt
− ẇ� = − �p + � · � +

9�

R2 �U − w� . �14�

Consider first the case of small bubble size, R��, and small
Reynolds numbers. In this case the viscous term on the RHS
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is dominant, and the difference between U and w cannot be
large. The bubbles behave essentially as Lagrangian tracers.
On the other hand, at high values of Re and for larger
bubbles, R��, the term �p should be re-interpreted on the
scale of the bubble as

�p �
p�x + R� − p�x − R�

2R
= �

U2�x + R� − U2�x − R�
4R

,

�15�

where x is the location of the bubble. The second line in Eq.
�15� follows from Bernouli’s equation p+�U2 /2�Const
�neglecting the acceleration due to gravity�. When the size of
the bubble becomes of the order of the Kolmogorov scale or
larger, we have

U2�x + R� − U2�x − R� � 2U�x��	R�1/3 � 2U�x�Urms� R

L�1/3

,

�16�

where Urms is the rms of the turbulent velocity. At this point
we can ask what is the value of the Reynolds number for
which the viscous term is no longer dominant, allowing for
significant fluctuations in U−w. This happens when the
terms in Eq. �14� are comparable, i.e., when


U − w
 �
U�x�Urms

R
�R

L�1/3 R2

9�
�

UrmsRe

9
�R

L�4/3

. �17�

This equation contains an important prediction for experi-
ments. It means that the fluctuations in the relative velocity
of the bubble with respect to fluid is of the order of the outer
fluid velocity when Re is larger than �R /L�4/3. In most ex-
periments, R /L�O�10−3� and it is therefore sufficient to
reach Re�O�105� for 
U−w
 to be of the order of Urms. Note
that this is precisely the result of the experiment in Ref. �12�.

This discussion has consequences for the bubble dynam-
ics and compressibility. At small Re, w−U is small and
����. Then the equation of the mixture becomes

�eff
DU

Dt
= − �p + � · �eff �18�

with

�eff = ��1 − C� , �19�

�eff = ��1 + 5
2C� , �20�

meaning that only the effective density and viscosity are
changed, as is usually assumed in numerical simulations of
“point” bubbles �12,13�. On the other hand, when Re is large

w−U
 is comparable to Urms. This will affect the stress ten-
sor on scales larger than the bubble size via �R and �S.
Furthermore,

RR̈ +
3

2
Ṙ2 =

1

�
�pB −

2


R
− p� +

1

4
�w − U� · �w − U� − 4�

Ṙ

R
,

�21�

where 
 is the surface tension. This equation tells us that the
volume change of the bubbles is excited by the relative ve-
locity w−U. When w−U=0, then

pB =
2


R
+ p , �22�

and so R is a constant. Similarly, Ṙ is small if w−U is small.
The strength of the volume variations can be characterized
by the Weber number

We �
�
w − U
2R



. �23�

As a summary, the additional stress tensor � in the basic
Eq. �7� due to the presence of bubble is a sum of three
contributions, ��, �R, and �R, see Eq. �8�. By using Eqs. �9�,
�11�, and �13�, we have

� = ��� 1
4 �w − U� · �w − U� − RR̈ − 5

2 Ṙ2�I

− 1
2 �w − U��w − U� + 5

2�S� , �24�

where the tensor S=�U+�U T. The relative importance of
the various terms in � depends on the values of Re and We.
If We is sufficiently large, there will be a large change in the
diagonal part of �S. In the following section we show that
this can be crucial for drag reduction.

IV. BALANCE EQUATIONS IN THE TURBULENT
BOUNDARY LAYER

At this point we apply the formalism detailed above to the
question of drag reduction by bubbles in a stationary turbu-
lent boundary layer with plain geometry. This can be a pres-
sure driven turbulent channel flow or a plain Couette flow,
which is close to the circular Couette flow realized in Ref.
�12�. Let the smallest geometric scale be 2L �for example the
channel height in a channel flow�, the unit vector in the
streamwise and spanwise directions be x̂ and ẑ, respectively,
and the distance to the nearest wall be y�L. The velocity
U�r , t� has only one mean component, denoted by V= x̂V,
which depends only on y: V=V�y�. Denoting turbulent ve-
locity fluctuations �with zero mean� by u�r , t� we have the
Reynolds decomposition of the velocity field to its mean and
fluctuating part,

U�r,t� = V�y�x̂ + u�r,t� . �25�

Long time averages are denoted by �¯�. Having dynamical
equations �7� and �24�, we can consider the effect of he
bubbles on the statistics of turbulent channel flow. For this
goal we shall use a simple stress model of planar turbulent
flow. A similar model was successfully used in the context of
drag reduction by polymeric additives �18�. This model is
based on the balance equations of mechanical momentum,
which we consider in the next Sec. IV A and the balance of
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the turbulent kinetic energy, discussed in Sec. IV B. The
variables that enter the model are the mean shear

S � dV/dy , �26a�

the turbulent kinetic energy density

K � 1
2��1 − C��
u
2� , �26b�

and the Reynolds stress

Wxy � − ��1 − C��uxuy� . �26c�

A. Momentum balance

From Eq. �7� we derive the exact equation for the momen-
tum balance by averaging and integrating in the usual way,
and find for y�L,

P = �S + Wxy + C��xy� . �27�

Here P is the momentum flux toward the wall. In a channel
flow P= p�L, where p��−�p /�x is the �constant� mean pres-
sure gradient. In a plain Couette flow P is another constant
which is determined by the velocity difference between the
two walls. For C=0 Eq. �27� is the usual equation satisfied
by Newtonian fluids.

To expose the consequences of the bubbles we notice that
the diagonal part of the bubble stress tensor � �the first line in
the RHS of Eq. �24�� does not contribute to Eq. �27�. The xy
component of the off-diagonal part of � is given by the sec-
ond line in Eq. �24�. We define the dimensionless ratio


 �
��wx − Ux��wy − Uy��

2�uxuy�
. �28�

For later purposes it is important to assess the size and sign
of 
.

For small values of Re, 
 is small according to Eq. �18�.
On the other hand, it was argued in �19,20� that for large Re
the fluctuating part of w is closely related to the fluctuating
part of u. The relation is

w − U � 2u . �29�

If we accept this argument verbatim this would imply that

�2 and is positive definite, as we indeed assume below.
With this definition we can simplify the appearance of Eq.
�27� to

P = �effS +
1 + C�
 − 1�

1 − C
Wxy , �30�

with �eff defined by Eq. �10�. Below we consider the high Re
limit, and accordingly can neglect the first term on the RHS.

B. Energy balance

Next, we consider the balance of turbulent energy in the
logarithmic layer. In this region, the production and dissipa-
tion of turbulent kinetic energy is almost balanced. The pro-
duction can be calculated exactly, WxyS. The dissipation of
the turbulent energy is modeled by the energy flux which is
the kinetic energy K�y� divided by the typical eddy turn over

time at a distance y from the wall, which is ���1−C�y /b�K,
where b is a dimensionless number of the order of unity.
Thus the flux is written as bK3/2 /y���1−C�. The extra dis-
sipation due to the bubble is C��ijsij�, where sij ��ui /�xj. In
summary, the turbulent energy balance equation is then writ-
ten as follows:

bK3/2

���1 − C�y
+ C��ijsij� = WxyS . �31�

As usual, the energy and momentum balance equations do
not close the problem, and we need an additional relation
between the objects of the theory. For Newtonian fluids it is
known that in the logarithmic layer Wxy and K are propor-
tional to each other

Wxy = cN
2 K, cN � 0.5. �32a�

For the problem of drag reduction by polymers this ratio is
also some constant cP�0.25 �in the maximum drag reduc-
tion regime�. For the bubbly flow, we define cB in the same
manner

Wxy � cB
2 K . �32b�

Clearly, limC→0 cB=cN and for small C �noninteracting
bubbles� cB

2 −cN
2 �C. It was reported in �21,22� that cB is

slightly smaller than its Newtonian counterpart; we therefore
write

cB
2 = cN

2 �1 − �C� , �32c�

with a positive coefficient � of the order of unity. We are not
aware of direct measurements of this form in bubbly flows,
but it appears natural to assume that the parameter � is
y-independent in the turbulent logarithmic law region. We
note that the Cauchy-Schwartz inequality can be used to
prove that Wxy �K, meaning that all the ratios cN,B,P

2 �1.

V. DRAG REDUCTION IN BUBBLY FLOWS

In this section we argue that the bubble compressibility is
crucial in enhancing the effect of drag reduction. This con-
clusion is in line with the experimental observation of Ref.
�12�, where bubbles and glass spheres were used under simi-
lar experimental conditions. Evidently, bubble deformations
can lead to the compressibility of the bubbly mixture. Not-
withstanding the difference between our notion of compress-
ibility and that of �13�, we note that in spirit this conclusion
is in accord with the simulation of �13� where a strong cor-
relation between compressibility and drag reduction were
found.

To make the point clear we start with the analysis of the
energy balance equation �31�. The additional stress tensor �ij
has a diagonal and an off-diagonal part. The off-diagonal
part has a viscous part that is negligible for high Re. The
other term can be evaluated using the estimate �29�, leading
to the contribution

� 1
2 �w − U��w − U�:�u� � 2�uu:�u� . �33�

The expression on the RHS is nothing but the spatial turbu-
lent energy flux which is known to be very small in the
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logarithmic layer compared to the production term on the
RHS of Eq. �31�. We will therefore neglect the off-diagonal
part of the stress tensor in the energy equation. The analysis
of the diagonal part of the stress depends on the issue of
bubble compressibility and we therefore discuss separately
oscillating bubbles and rigid spheres.

A. Drag reduction with rigid spheres

Consider first situations in which Ṙ=0. This is the case
for bubbles at small We, or when the bubbles are replaced by
some particles which are less dense than neat fluid �12�.
When the volume of the bubbles is fixed, the incompressibil-
ity condition for the Newtonian fluid is unchanged, and
sii=0. The diagonal part of �, due to the incompressibility
condition sii=0, has no contribution to ��ijsij�. The energy
balance equation is then unchanged compared to the
Newtonian fluid. The momentum balance equation is never-
theless affected by the bubbles. Putting �32� into �31�, we
have

Wxy = ��1 − C�
S2y2cB

6

b2 . �34�

To assess the amount of drag reduction we will consider an
experiment �14� in which the velocity profile �and thus S� is
maintained fixed. Drag reduction is then measured by the
reduction in the momentum flux P. We then have

P =
��1 − C + 
C�cB

6

�2b2 , �35�

where � is the von Karman constant. If there are no bubbles
�C=0�, the Newtonian momentum flux PN reads

PN =
�cN

6

�2b2 . �36�

The percentage of drag reduction can be defined as

%DR =
PN − P

PN
= 1 −

�1 − C + 
C�cB
6

cN
6 � �1 − 
 + 3��C .

�37�

Here we assumed that ��1. At small Re, 
=0 and the
amount of drag reduction increases linearly with C. If Re is
very large we expect 
�2, and then the drag is enhanced.
This result is in pleasing agreement with the experimental
data in �12�. Indeed, the addition of glass beads with density
less than water caused drag reduction when Re is small,
whereas at Re��106�, the drag was slightly enhanced.

B. Drag reduction with flexible bubbles

If the value of We is sufficiently large such that Ṙ�0, the
velocity field is no longer divergenceless. To see how this
affects the energy equation we consider a single bubble with
volume V. From the continuity equation

� u · dA = V̇ . �38�

If we assumed that the bubble is small enough such that the
velocity field does not change much on the scale of R, then
we have

� · u �
V̇
V

= 3
Ṙ

R
. �39�

Therefore, the last term in �21� can be approximated as

4�
Ṙ

R
=

4�

3
� · u . �40�

Next we substitute Eq. �21� into Eq. �24�. For small ampli-
tude volume variations we can neglect the terms proportional

to Ṙ2 �23�. The expression for the stress tensor simplifies to

�ij � 	− pB +
2


R
+ p + 4��

Ṙ

R

�ij −

�

2
�wi − Ui��wj − Uj� .

�41�

For large We, the term ��wi−Ui��wj −Uj� /2 becomes larger
than the terms pB−2
 /R+ p. Using Eq. �39�

�ij � �	4

3
�sij�ij +

1

2
�wi − Ui��wj − Uj�
 �42�

The extra turbulent dissipation due to the bubble is ��ijsij�. In
light of the smallness of the term in Eq. �33� we find

��ijsij� = � 4
3�sii

2� . �43�

The term �4/3��sii
2 is of the same form as the usual dissipa-

tion term �sijsij and therefore we write this as follows:

� 4
3�sii

2� = A
�
u
3/2

y
= A

K3/2

���1 − C�3/2y
, �44�

where A is an empirical constant. Finally, the energy equa-
tion becomes

b�1 − C� + AC
���1 − C�3/2

K3/2

y
= WxyS . �45�

As before, we specialize the situation to an experiment in
which S is constant, and compute the momentum flux

P =
��1 − C�2�1 − C + 
C�

�1 − C + A
b C�2

cB
6

�2b2 . �46�

The degree of drag reduction is then

%DR = 1 −
�1 − C�2�1 − C + 
C�

�1 − C + A
b C�2 � cB

cN
�6

� �1 − 
 +
2A

b
+ 3��C . �47�

Note that A is an unknown parameter that should depend on
We, and so its value is different in different experiments. The
percentage of drag reduction for various values of A are
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shown in Fig. 1, where we chose 
=2 and for simplicity we
estimate �=0. One sees that for 
=2 and A=0 �where the
latter is associated with rigid bubbles�, we only find drag
enhancement. For small value of A, or small amplitudes
of volume variations, small concentrations of bubbles lead
�for 
=2� to drag enhancement, but upon increasing the con-
centration we find modest drag reduction. Larger values of A
lead to considerably large degrees of drag reduction. For
A=0.15, the result agrees reasonably with Legner’s model
which predicts %DR�1–5�1−C�2 /4 �11�. Note that accord-
ing to Legner, there should be considerable drag enhance-
ment when C=0. This is of course a nonsensical result that is
absent in our theory. For A=0.8, %DR�4C for small C.This
is the best fit to the experimental results which are reported
in �14�.

VI. SUMMARY AND DISCUSSION

The main conclusion of this study is that bubble volume
variations can contribute decisively to drag reduction by
bubbles in turbulent flows. In agreement with the experimen-
tal findings of �12�, we find that rigid bubbles tend to drag
enhance, and the introduction of volume variations whose
amplitude is measured by the parameter A �Fig. 1� increases
the efficacy of drag reduction.

It is also important to recognize that bubble volume varia-
tions go hand in hand with the compressibility � ·u�0. In
this sense we are in agreement with the proposition of �13�
that drag reduction by bubbles is caused by the compressibil-
ity. There is a difference, however, in �13� the flow is free
�having only one wall� whereas in our case we have a chan-
nel in mind. The mechanism of �13� cannot appear in our
case. On the other hand �13� does not allow for bubble com-
pressibility. The bottom line is that in both cases the bubble
dynamics leads to the existence of compressibility, and the
latter contributes to the drag reduction.

One drawback of the present study is that the bubble con-
centration is taken uniform in the flow. In reality a profile of

bubble concentration may lead to even stronger drag reduc-
tion if placed correctly with respect to the wall. A consistent
study of this possibility calls for the consideration of buoy-
ancy and the self-consistent solution of the bubble concen-
tration profile. Such an effort is beyond the scope of this
paper and must await future progress.

Finally, it should be noted that we neglected the effects of
viscosity in Eqs. �30� and �31� as we assumed the value of
Re to be large. For moderately large Re, one can take the
viscosity effects into account as suggested in �18�.
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